

Welcome to Vacuity’s documentation!

Contents:

	Available clients
	vacuity.client.cvtc module

	vacuity.client.mock module

	Client abstraction
	vacuity.client.abstract module

	vacuity package
	Submodules

	vacuity.controllers module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Available clients

This page lists built-in Vacuity clients. These can be used to connect to a room schedule and lab availability database.

Clients are instantiated in your run file. For example, this file instantiates and runs using the Mock client:

from flask import Flask

import vacuity.controllers
from vacuity.client import mock

vacuity.controllers.COMPLEX = mock.MOCKED_COMPLEX

Static folder is disabled as long as we only have one blueprint
https://stackoverflow.com/a/25804585
app = Flask(__name__, static_folder=None)

Clean up Jinja output
app.jinja_env.trim_blocks = True
app.jinja_env.lstrip_blocks = True

app.register_blueprint(vacuity.controllers.main, url_prefix="/")

When saved as run.py` and run with ``gunicorn run:app, this app loads the mocked complex defined in the mock module. The useful line is vacuity.controllers.COMPLEX = ..., which sets the complex used in the thread.

vacuity.client.cvtc module

Client for CVTC room schedule data API and LabStats lab usage API

This client retrieves its list of rooms from LabStats. Each top-level group in
LabStats is considered a building in the Complex. Every group underneath a
root group is considered a candidate for display in Vacuity. Candidates are
selected for pre-filtering if they match these criteria:

	Group contains stations, not groups

	
	Group has a selection criteria, EITHER:

	
	Group has “lab features enabled”

	Group’s description contains the string “vacuity_enable”

Once a group meets these criteria, its lab and room schedule information will
be displayed in Vacuity. To prevent lab usage information from being
displayed, add “vacuity_nolab” to the group’s description.

	
class vacuity.client.cvtc.CVTCBuilding(identifier, labstats_group: labstats_api.models.Group = None, session: requests.sessions.Session = None)

	Bases: vacuity.client.abstract.Building

	Parameters

	
	identifier – The Banner ID of this building

	labstats_group – An optional LabStats group representing this
building. Searches for room groups will occur within this group.

	
abbreviation

	A shorter name for the building, one to five characters long ideally.

Used to denote the building alongside room codes or anywhere else that it
is not possible to display the building description.

	
description

	A long, human-recognizable name for the building.

Used whenever possible when the user needs to select a building. For
example, a list of building descriptions is displayed when asking the user
to filter by building.

	
identifier

	The meaningful identifier of this building.

Used to represent this building when requesting information about it from
the backend.

	
room_for_identifier(identifier)

	Returns the Room with the specified identifier.

	Raises

	RoomNotFoundError – The requested identifier does not
correspond to a room we know about.

	
rooms

	Returns a list of Room that this building contains.

	
class vacuity.client.cvtc.CVTCComplex(labstats_api_url, labstats_api_key, session: requests.sessions.Session)

	Bases: vacuity.client.abstract.Complex

Uses hard-coded data to return CVTC buildings

	Parameters

	
	labstats_api_url – URL of hosted LabStats instance’s API.

	labstats_api_key – API key used to get data from LabStats.

	session – A Requests Session object. It is recommended to use
CacheControl or a similar library to add caching, else you will hit
API rate limiting.

	
building_for_identifier(identifier)

	Returns the Building with the specified identifier.

	Raises

	BuildingNotFoundError – The requested identifier does not
correspond to a building we know about.

	
buildings

	Returns all of the Buildings we know about.

	
classmethod formal_id_for_banner_id(banner_id)

	Given the Banner ID of a CVTC building, get the ID used elsewhere.

For example, the Business Education Center is “EC BUS” in Banner but
“BEC” elsewhere.

	
vacuity_feedback_url

	Returns an HTML-safe feedback URL.

This URL will be placed in a “Give Feedback” link near the bottom of
every page.

If you do not provide a feedback URL, the “Give Feedback” link will
not be shown.

	
class vacuity.client.cvtc.CVTCLab(labstats_group: labstats_api.models.Group)

	Bases: vacuity.client.abstract.ComputerLab

A Lab which pulls data from LabStats.

	Parameters

	labstats_group – Group corresponding to this Lab.

	
computer_availability_now

	A LabComputerAvailability representing the lab’s current
state.

	
installed_software_names

	Human-readable names of interesting software installed in this lab.

“Interesting” depends on your institution. All of the software
installed on the machine may be interesting to you, or only a few
things.

	
class vacuity.client.cvtc.CVTCLabComputerAvailability(available, total)

	Bases: vacuity.client.abstract.LabComputerAvailability

Point-in-time state of computers available in a lab at CVTC.

	
available

	The number of computers that are available for use.

	
summary

	A single-word summary of the availability of computers in the room.

See also

LabComputerAvailabilitySummary

	
total

	The number of computers that the room contains.

	
class vacuity.client.cvtc.CVTCRoom(identifier, banner_building_id, formal_building_id, labstats_group: labstats_api.models.Group = None, session: requests.sessions.Session = None)

	Bases: vacuity.client.abstract.Room

A Room capable of combining data from LabStats and Banner.

	Parameters

	
	identifier – This room’s meaningful ID.

	banner_building_id – The name of the building this room belongs to
in banner.

	formal_building_id – The name of the building that this room belongs
to, according to the “rest of the world”.

	labstats_group – The LabStats group corresponding to this room.
If provided, this Room is capable of returning computer lab usage
data. If not provided, any requests for computer lab usage data will
return None.

	
availability_now

	A RoomAvailability for the room’s status at access time.

Of course, like any value, you may choose to cache results so “now”
may be “15 minutes ago”, just as long as the data is up-to-date enough
for your users.

	
code

	The human-readable name for the room.

May be a number (e.g. 104), a name (e.g. Bailey), or even the same as
the identifier.

	
identifier

	The meaningful identifier of this room.

Used to represent this room when requesting information about it from
the backend.

	
lab

	A LabInformation representing the computer lab this room
contains, or None if the room does not contain a computer lab.

	
class vacuity.client.cvtc.CVTCRoomAvailability(moment, summary, humanized)

	Bases: tuple

	
humanized

	Alias for field number 2

	
moment

	Alias for field number 0

	
summary

	Alias for field number 1

	
vacuity.client.cvtc.event_json_to_naive_events(event_json)

	Converts a very specific JSON-formatted list of objects to Chronology
NaiveEvents.

	
vacuity.client.cvtc.get_group_in_list_of_groups(group_name, group_list)

	Returns the group with name matching group_name in group_list.

If no match is found, ValueError is raised.

vacuity.client.mock module

Client implementation with pre-made test and demonstration data

	
class vacuity.client.mock.MockBuilding(identifier: str, abbreviation: str, description: str, rooms: dict)

	Bases: vacuity.client.abstract.Building

	
abbreviation

	A shorter name for the building, one to five characters long ideally.

Used to denote the building alongside room codes or anywhere else that it
is not possible to display the building description.

	
description

	A long, human-recognizable name for the building.

Used whenever possible when the user needs to select a building. For
example, a list of building descriptions is displayed when asking the user
to filter by building.

	
identifier

	The meaningful identifier of this building.

Used to represent this building when requesting information about it from
the backend.

	
room_for_identifier(identifier)

	Returns the Room with the specified identifier.

	Raises

	RoomNotFoundError – The requested identifier does not
correspond to a room we know about.

	
rooms

	Returns a list of Room that this building contains.

	
class vacuity.client.mock.MockComplex(buildings: dict)

	Bases: vacuity.client.abstract.Complex

	
building_for_identifier(identifier)

	Returns the Building with the specified identifier.

	Raises

	BuildingNotFoundError – The requested identifier does not
correspond to a building we know about.

	
buildings

	Returns all of the Buildings we know about.

	
class vacuity.client.mock.MockComputerLab(total_computers: int, available_computers: int, software: List[str])

	Bases: vacuity.client.abstract.ComputerLab

	
computer_availability_now

	A LabComputerAvailability representing the lab’s current
state.

	
installed_software_names

	Human-readable names of interesting software installed in this lab.

“Interesting” depends on your institution. All of the software
installed on the machine may be interesting to you, or only a few
things.

	
class vacuity.client.mock.MockLabComputerAvailability(available, total)

	Bases: vacuity.client.abstract.LabComputerAvailability

	
available

	The number of computers that are available for use.

	
summary

	A single-word summary of the availability of computers in the room.

See also

LabComputerAvailabilitySummary

	
total

	The number of computers that the room contains.

	
class vacuity.client.mock.MockRoom(identifier: str, code: str, unavailability: List[vacuity.client.mock.MockUnavailableBlock], lab: vacuity.client.abstract.ComputerLab = None)

	Bases: vacuity.client.abstract.Room

	
availability_now

	A RoomAvailability for the room’s status at access time.

Of course, like any value, you may choose to cache results so “now”
may be “15 minutes ago”, just as long as the data is up-to-date enough
for your users.

	
code

	The human-readable name for the room.

May be a number (e.g. 104), a name (e.g. Bailey), or even the same as
the identifier.

	
identifier

	The meaningful identifier of this room.

Used to represent this room when requesting information about it from
the backend.

	
lab

	A LabInformation representing the computer lab this room
contains, or None if the room does not contain a computer lab.

	
class vacuity.client.mock.MockRoomAvailability(moment, summary, humanized)

	Bases: tuple

	
humanized

	Alias for field number 2

	
moment

	Alias for field number 0

	
summary

	Alias for field number 1

	
class vacuity.client.mock.MockUnavailableBlock(start, end)

	Bases: tuple

	
end

	Alias for field number 1

	
start

	Alias for field number 0

	
vacuity.client.mock.midnight_shifted_by(hours, minutes)

	Utility to shift today (at module import time) by hours and minutes

Client abstraction

Implement these abstractions to allow your data source to be displayed in Vacuity.

See Available clients for information on clients that are available from the current Vacuity codebase, and how to use them.

Client modules should never carry state unless it is saved in an external place. A separate module state could be created for each thread or worker in a WSGI server.

vacuity.client.abstract module

	
class vacuity.client.abstract.Complex

	Bases: abc.ABC

Manages initial access to Building, allowing filtering.

	
building_for_identifier(identifier) → vacuity.client.abstract.Building

	Returns the Building with the specified identifier.

	Raises

	BuildingNotFoundError – The requested identifier does not
correspond to a building we know about.

	
buildings

	Returns all of the Buildings we know about.

	
vacuity_feedback_url

	Returns an HTML-safe feedback URL.

This URL will be placed in a “Give Feedback” link near the bottom of
every page.

If you do not provide a feedback URL, the “Give Feedback” link will
not be shown.

	
class vacuity.client.abstract.Building

	Bases: abc.ABC

Describes a building.

A building contains Room

	
abbreviation

	A shorter name for the building, one to five characters long ideally.

Used to denote the building alongside room codes or anywhere else that it
is not possible to display the building description.

	
description

	A long, human-recognizable name for the building.

Used whenever possible when the user needs to select a building. For
example, a list of building descriptions is displayed when asking the user
to filter by building.

	
identifier

	The meaningful identifier of this building.

Used to represent this building when requesting information about it from
the backend.

	
room_for_identifier(identifier) → vacuity.client.abstract.Room

	Returns the Room with the specified identifier.

	Raises

	RoomNotFoundError – The requested identifier does not
correspond to a room we know about.

	
rooms

	Returns a list of Room that this building contains.

	
class vacuity.client.abstract.ComputerLab

	Bases: abc.ABC

A group of computers in a room with a common set of installed software.

	
computer_availability_now

	A LabComputerAvailability representing the lab’s current
state.

	
installed_software_names

	Human-readable names of interesting software installed in this lab.

“Interesting” depends on your institution. All of the software
installed on the machine may be interesting to you, or only a few
things.

	
class vacuity.client.abstract.LabComputerAvailability

	Bases: abc.ABC

A point-in-time state of the available or unavailable computers in a lab.

	
available

	The number of computers that are available for use.

	
summary

	A single-word summary of the availability of computers in the room.

See also

LabComputerAvailabilitySummary

	
total

	The number of computers that the room contains.

	
class vacuity.client.abstract.AvailabilitySummary

	Bases: enum.Enum

Represents momentary one-word of availability of a Vacuity resource.

GOOD means the resource is plentiful.

POOR means the resource is not very available.

NONE means the resource is unavailable (or very close to being
unavailable, depending on your needs).

ERROR means Vacuity could not determine the state of the resource.

	
ERROR = 'error'

	

	
GOOD = 'good'

	

	
NONE = 'none'

	

	
POOR = 'poor'

	

	
class vacuity.client.abstract.Room

	Bases: abc.ABC

Describes a room.

A room may be scheduled, and it may contain computers, of which some are
available and others are in use.

	
availability_now

	A RoomAvailability for the room’s status at access time.

Of course, like any value, you may choose to cache results so “now”
may be “15 minutes ago”, just as long as the data is up-to-date enough
for your users.

	
code

	The human-readable name for the room.

May be a number (e.g. 104), a name (e.g. Bailey), or even the same as
the identifier.

	
identifier

	The meaningful identifier of this room.

Used to represent this room when requesting information about it from
the backend.

	
lab

	A LabInformation representing the computer lab this room
contains, or None if the room does not contain a computer lab.

	
class vacuity.client.abstract.RoomAvailability

	Bases: abc.ABC

Describes a room’s availability status at a point in time

	
humanized

	A human-readable description of when the room will become available or
unavailable.

For example, “available for four hours”, “available until 4PM”, or
“unavailable until 3:55 PM”. The format is up to you, but try to keep
it between three to five words.

	
moment

	The moment in time that this unavailable status represents

	
summary

	Whether the room is available or not.

See also

RoomAvailabilitySummary

	
class vacuity.client.abstract.VacuityException

	Bases: Exception

Base class for errors arising from Vacuity

	
class vacuity.client.abstract.BuildingNotFoundError

	Bases: vacuity.client.abstract.VacuityException

Thrown when a Building could not be found in a Complex

	
class vacuity.client.abstract.RoomNotFoundError

	Bases: vacuity.client.abstract.VacuityException

Thrown when a Room could not be found in a Building

vacuity package

Submodules

vacuity.controllers module

Uses client abstractions to serve Vacuity webpages.

Set the COMPLEX module variable prior to calling any functions in this module.

	
vacuity.controllers.browse(*args, **kwargs)

	

	
vacuity.controllers.browse_redirect()

	

	
vacuity.controllers.get_proper_os(possible: str) → str

	Returns “Windows” or “macOS” if a similar string is passed in, “any” otherwise.

Effectively escapes any values and ensures they are correct for passing to
output or other Vacuity functions.

Similarity to “Windows” or “macOS” is determined by casefolding both the
input and the desired strings. Any possible inputs that don’t match these
are discarded and “any” is returned.

	
vacuity.controllers.index(*args, **kwargs)

	

	
vacuity.controllers.lab(*args, **kwargs)

	

	
vacuity.controllers.route_with_complex(f)

	

Module contents

A web application to help people find space on campus.

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vacuity	

 	
 	
 vacuity.client.cvtc	

 	
 	
 vacuity.client.mock	

 	
 	
 vacuity.controllers	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V

A

 	
 	abbreviation (vacuity.client.abstract.Building attribute)

 	(vacuity.client.cvtc.CVTCBuilding attribute)

 	(vacuity.client.mock.MockBuilding attribute)

 	availability_now (vacuity.client.abstract.Room attribute)

 	(vacuity.client.cvtc.CVTCRoom attribute)

 	(vacuity.client.mock.MockRoom attribute)

 	
 	AvailabilitySummary (class in vacuity.client.abstract)

 	available (vacuity.client.abstract.LabComputerAvailability attribute)

 	(vacuity.client.cvtc.CVTCLabComputerAvailability attribute)

 	(vacuity.client.mock.MockLabComputerAvailability attribute)

B

 	
 	browse() (in module vacuity.controllers)

 	browse_redirect() (in module vacuity.controllers)

 	Building (class in vacuity.client.abstract)

 	building_for_identifier() (vacuity.client.abstract.Complex method)

 	(vacuity.client.cvtc.CVTCComplex method)

 	(vacuity.client.mock.MockComplex method)

 	
 	BuildingNotFoundError (class in vacuity.client.abstract)

 	buildings (vacuity.client.abstract.Complex attribute)

 	(vacuity.client.cvtc.CVTCComplex attribute)

 	(vacuity.client.mock.MockComplex attribute)

C

 	
 	code (vacuity.client.abstract.Room attribute)

 	(vacuity.client.cvtc.CVTCRoom attribute)

 	(vacuity.client.mock.MockRoom attribute)

 	Complex (class in vacuity.client.abstract)

 	computer_availability_now (vacuity.client.abstract.ComputerLab attribute)

 	(vacuity.client.cvtc.CVTCLab attribute)

 	(vacuity.client.mock.MockComputerLab attribute)

 	
 	ComputerLab (class in vacuity.client.abstract)

 	CVTCBuilding (class in vacuity.client.cvtc)

 	CVTCComplex (class in vacuity.client.cvtc)

 	CVTCLab (class in vacuity.client.cvtc)

 	CVTCLabComputerAvailability (class in vacuity.client.cvtc)

 	CVTCRoom (class in vacuity.client.cvtc)

 	CVTCRoomAvailability (class in vacuity.client.cvtc)

D

 	
 	description (vacuity.client.abstract.Building attribute)

 	(vacuity.client.cvtc.CVTCBuilding attribute)

 	(vacuity.client.mock.MockBuilding attribute)

E

 	
 	end (vacuity.client.mock.MockUnavailableBlock attribute)

 	
 	ERROR (vacuity.client.abstract.AvailabilitySummary attribute)

 	event_json_to_naive_events() (in module vacuity.client.cvtc)

F

 	
 	formal_id_for_banner_id() (vacuity.client.cvtc.CVTCComplex class method)

G

 	
 	get_group_in_list_of_groups() (in module vacuity.client.cvtc)

 	
 	get_proper_os() (in module vacuity.controllers)

 	GOOD (vacuity.client.abstract.AvailabilitySummary attribute)

H

 	
 	humanized (vacuity.client.abstract.RoomAvailability attribute)

 	(vacuity.client.cvtc.CVTCRoomAvailability attribute)

 	(vacuity.client.mock.MockRoomAvailability attribute)

I

 	
 	identifier (vacuity.client.abstract.Building attribute)

 	(vacuity.client.abstract.Room attribute)

 	(vacuity.client.cvtc.CVTCBuilding attribute)

 	(vacuity.client.cvtc.CVTCRoom attribute)

 	(vacuity.client.mock.MockBuilding attribute)

 	(vacuity.client.mock.MockRoom attribute)

 	
 	index() (in module vacuity.controllers)

 	installed_software_names (vacuity.client.abstract.ComputerLab attribute)

 	(vacuity.client.cvtc.CVTCLab attribute)

 	(vacuity.client.mock.MockComputerLab attribute)

L

 	
 	lab (vacuity.client.abstract.Room attribute)

 	(vacuity.client.cvtc.CVTCRoom attribute)

 	(vacuity.client.mock.MockRoom attribute)

 	
 	lab() (in module vacuity.controllers)

 	LabComputerAvailability (class in vacuity.client.abstract)

M

 	
 	midnight_shifted_by() (in module vacuity.client.mock)

 	MockBuilding (class in vacuity.client.mock)

 	MockComplex (class in vacuity.client.mock)

 	MockComputerLab (class in vacuity.client.mock)

 	MockLabComputerAvailability (class in vacuity.client.mock)

 	
 	MockRoom (class in vacuity.client.mock)

 	MockRoomAvailability (class in vacuity.client.mock)

 	MockUnavailableBlock (class in vacuity.client.mock)

 	moment (vacuity.client.abstract.RoomAvailability attribute)

 	(vacuity.client.cvtc.CVTCRoomAvailability attribute)

 	(vacuity.client.mock.MockRoomAvailability attribute)

N

 	
 	NONE (vacuity.client.abstract.AvailabilitySummary attribute)

P

 	
 	POOR (vacuity.client.abstract.AvailabilitySummary attribute)

R

 	
 	Room (class in vacuity.client.abstract)

 	room_for_identifier() (vacuity.client.abstract.Building method)

 	(vacuity.client.cvtc.CVTCBuilding method)

 	(vacuity.client.mock.MockBuilding method)

 	RoomAvailability (class in vacuity.client.abstract)

 	
 	RoomNotFoundError (class in vacuity.client.abstract)

 	rooms (vacuity.client.abstract.Building attribute)

 	(vacuity.client.cvtc.CVTCBuilding attribute)

 	(vacuity.client.mock.MockBuilding attribute)

 	route_with_complex() (in module vacuity.controllers)

S

 	
 	start (vacuity.client.mock.MockUnavailableBlock attribute)

 	summary (vacuity.client.abstract.LabComputerAvailability attribute)

 	(vacuity.client.abstract.RoomAvailability attribute)

 	(vacuity.client.cvtc.CVTCLabComputerAvailability attribute)

 	(vacuity.client.cvtc.CVTCRoomAvailability attribute)

 	(vacuity.client.mock.MockLabComputerAvailability attribute)

 	(vacuity.client.mock.MockRoomAvailability attribute)

T

 	
 	total (vacuity.client.abstract.LabComputerAvailability attribute)

 	(vacuity.client.cvtc.CVTCLabComputerAvailability attribute)

 	(vacuity.client.mock.MockLabComputerAvailability attribute)

V

 	
 	vacuity (module)

 	vacuity.client.cvtc (module)

 	vacuity.client.mock (module)

 	
 	vacuity.controllers (module)

 	vacuity_feedback_url (vacuity.client.abstract.Complex attribute)

 	(vacuity.client.cvtc.CVTCComplex attribute)

 	VacuityException (class in vacuity.client.abstract)

 nav.xhtml

 Table of Contents

 		
 Welcome to Vacuity’s documentation!

 		
 Available clients

 		
 vacuity.client.cvtc module

 		
 vacuity.client.mock module

 		
 Client abstraction

 		
 vacuity.client.abstract module

 		
 vacuity package

 		
 Submodules

 		
 vacuity.controllers module

 		
 Module contents

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

